欢迎来到重庆工业化机电设备有限公司官方网站!
您的位置: 首页 - 行业新闻 - 工业提升门弹簧圈数如何计算

工业提升门弹簧圈数如何计算

来源:行业新闻 / 时间: 2025-05-06

大家好,关于工业提升门弹簧圈数如何计算很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于某同学在制作弹簧测力计时,找来了多种不同类型的弹簧的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

[编辑本段]弹簧

弹簧是一种利用弹性来工作的机械零件。一般用弹簧钢制成。用以控制机件的运动、缓和冲击或震动、贮蓄能量、测量力的大小等,广泛用于机器、仪表中。按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧等。

[编辑本段]其主要功能

①控制机械的运动,如内燃机中的阀门弹簧、离合器中的控制弹簧等。②吸收振动和冲击能量,如汽车、火车车厢下的缓冲弹簧、联轴器中的吸振弹簧等。③储存及输出能量作为动力,如钟表弹簧、枪械中的弹簧等。④用作测力元件,如测力器、弹簧秤中的弹簧等。弹簧的载荷与变形之比称为弹簧刚度,刚度越大,则弹簧越硬。

按受力性质,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧,按形状可分为碟形弹簧、环形弹簧、板弹簧、螺旋弹簧、截锥涡卷弹簧以及扭杆弹簧等。普通圆柱弹簧由于制造简单,且可根据受载情况制成各种型式,结构简单,故应用最广。弹簧的制造材料一般来说应具有高的弹性极限、疲劳极限、冲击韧性及良好的热处理性能等,常用的有碳素弹簧钢、合金弹簧钢、不锈弹簧钢以及铜合金、镍合金和橡胶等。弹簧的制造方法有冷卷法和热卷法。弹簧丝直径小于8毫米的一般用冷卷法,大于8毫米的用热卷法。有些弹簧在制成后还要进行强压或喷丸处理,可提高弹簧的承载能力。

弹簧是机械和电子行业中广泛使用的一种弹性元件,弹簧在受载时能产生较大的弹性变形,把机械功或动能转化为变形能,而卸载后弹簧的变形消失并回复原状,将变形能转化为机械功或动能。

[编辑本段]弹簧的类

按受力性质,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧;按形状可分为碟形弹簧、环形弹簧、板弹簧、螺旋弹簧、截锥涡卷弹簧以及扭杆弹簧等。普通圆柱弹簧由于制造简单,且可根据受载情况制成各种型式,结构简单,故应用最广。弹簧的制造材料一般来说应具有高的弹性极限、疲劳极限、冲击韧性及良好的热处理性能等,常用的有碳素弹簧钢、合金弹簧钢、不锈弹簧钢以及铜合金、镍合金和橡胶等。弹簧的制造方法有冷卷法和热卷法。弹簧丝直径小于8毫米的一般用冷卷法,大于8毫米的用热卷法。有些弹簧在制成后还要进行强压或喷丸处理,可提高弹簧的承载能力。

什么是螺旋弹簧?

螺旋弹簧即扭转弹簧,是承受扭转变形的弹簧,它的工作部分也是密绕成螺旋形。扭转弹簧的端部结构是加工成各种形状的扭臂,而不是勾环。扭转弹簧常用于机械中的平衡机构,在汽车、机床、电器等工业生产中广泛应用。

什么是拉伸弹簧?

拉伸弹簧是承受轴向拉力的螺旋弹簧,拉伸弹簧一般都用圆截面材料制造。在不承受负荷时,拉伸弹簧的圈与圈之间一般都是并紧的没有间隙。

什么是压缩弹簧?

压缩弹簧是承受向压力的螺旋弹簧,它所用的材料截面多为圆形,也有用矩形和多股钢萦卷制的,弹簧一般为等节距的,压缩弹簧的形状有:圆柱形、圆锥形、中凸形和中凹形以及少量的非圆形等,压缩弹簧的圈与圈之间有一定的间隙,当受到外载荷时弹簧收缩变形,储存变形能。

什么是扭力弹簧?扭力弹簧利用杠杆原理,通过对材质柔软、韧度较大的弹性材料的扭曲或旋转,使之具有极大的机械能。

[编辑本段]弹簧各部分名称:

(1)弹簧丝直径d:制造弹簧的钢丝直径。

(2)弹簧外径D:弹簧的最大外径。

(3)弹簧内径D1:弹簧的最小外径。

(4)弹簧中径D2:弹簧的平均直径。它们的计算公式为:D2=(D+D1)÷2=D1+d=D-d

(5)t:除支撑圈外,弹簧相邻两圈对应点在中径上的轴向距离成为节距,用t表示。

(6)有效圈数n:弹簧能保持相同节距的圈数。

(7)支撑圈数n2:为了使弹簧在工作时受力均匀,保证轴线垂直端面、制造时,常将弹簧两端并紧。并紧的圈数仅起支撑作用,称为支撑圈。一般有1.5T、2T、2.5T,常用的是2T。

(8)总圈数n1:有效圈数与支撑圈的和。即n1=n+n2.

(9)自由高H0:弹簧在未受外力作用下的高度。由下式计算:H0=nt+(n2-0.5)d=nt+1.5d(n2=2时)

(10)弹簧展开长度L:绕制弹簧时所需钢丝的长度。L≈n1(ЛD2)2+n2(压簧) L=ЛD2 n+钩部展开长度(拉簧)

(11)螺旋方向:有左右旋之分,常用右旋,图纸没注明的一般用右旋。

(12)弹簧旋绕比;中径D与钢丝直径d之比

[编辑本段]弹簧的规定画法

(1)在平行螺旋弹簧线的视图上,各圈的轮廓线画成直线。

(2)有效圈数在4圈以上的弹簧,可只画出其两端1~2圈(不含支撑圈)。中间用通过弹簧钢丝中心的点画线连起来。

(3)在图样上,当弹簧的旋向不作规定时,螺旋弹簧一律画成右旋,左旋弹簧也画成右旋,但要注明“左”字。

[编辑本段]弹簧的应用

大多数材料都有不同程度的弹性,如果将其弯曲,便会以很大的力量恢复其原形。在人类历史上,一定很早就注意到树苗和幼树的树枝有很大的挠性,因为许多原始文化利用这一特性,在特制的门后或笼子后楔上一根棍,或者用活结套在一根杆上向下拉;一旦松开张力,这根棍或杆就会往回弹。他们就用这种办法来捕捉飞禽走兽。实际上,弓就是按这种方式利用幼树弹性的弹簧;先向后拉弓,然后撒手,让其回弹。中世纪时,这种想法开始出现在机械上,如纺织机、车床、钻机、磨面机和锯。操作者用手或脚踏板给出下压冲程,将工作机械往下拉,这时用绳索固定在机械上的一根杆弹回,产生往复运动。

弹性材料的抗扭性不压于它的抗挠性。希腊帝国时期(大概是公元前4世纪)发明了用搓成的腱绳或毛绳拉紧的扭簧,用以代替简单的弹簧来加强石弩和抛石机的威力。这时人们开始认识到,金属比木头、角质或任何这类有机物质的弹性更大。菲洛(其写作年代约为公元前200年)把它作为一项新发现来进行介绍。他估计读者是难以置信的。凯尔特人和西班牙人的剑的弹性,引起了他的亚历山大城的前辈的注意。为了弄清楚剑为什么有弹性,他们进行了许多实验。结果他的师傅克特西比发明了抛石机,抛石机的弹簧是用弯曲的青铜板作成的——实际上是最早的片簧;菲洛本人又进一步改进了这些抛石机。富有创造性的克特西比在发明这种抛石机后,又想出了另一种抛石机—一它利用汽缸内空气在受压的情况下产生的弹性工作。

在很久以后人们才想到:如果压缩一根螺旋杆,而不是弯曲一根直杆,那么金属弹簧储存的能量就会更大。据伯鲁涅列斯基的小传记载,他制作过一口闹钟,其中使用了若干代弹簧。最近有人指出,在附有一些奇特的螺旋弹簧钟表图的15世纪末叶的一本机械手册中有这架闹钟的图样。这类弹簧也用于现代的捕鼠器。带圈簧(水平压缩而不是垂直压缩的弹簧)的钟表,在1460年左右肯定已开始使用了,但基本上是皇室的奢侈品,大约又过了1个世纪,带弹簧的钟表才成为中产阶级人士的标志。

控制流动方向的阀门

由于阀门只让水或其他流体(如空气)沿一个方向流动,几乎可以肯定地说,它最先是作为需要这种运动的早期工具——风箱的一个部件出现的。阿格里科拉在研究文艺复兴时期的冶金学的文章中说,锻铁炉风箱有一个比风眼稍长和稍宽的薄板,“薄板上覆盖着山羊皮,是用皮带捆在板上的,毛边一侧冲地面”。放置的方式是:当风箱鼓起来时,薄板打开;当风箱收缩时,薄板关闭。”瓣阀肯定远比阿格里科拉的时代为早,同楔形板风箱一样古老。但它问世的具体年代却很难确定,因为瓣阀这个术语来自古老的皮袋型风箱(在这种风箱中,操作的人可以用脚或手将风眼堵住)。显然,最早的模型大约是希腊王朝时代的青铜灯,但在罗马后期的诗人奥素尼乌斯之前还没有人提到过青铜灯的阀门。奥索尼乌斯把陆上快咽气的鱼的鳃。比作在掬木腔内往复运动时通过孔眼交替进风和挡风的羊毛阀。

可以说,机械上使用阀门的历史起始于克特西比的压力泵。维脱劳维斯和赫罗对压力泵作了详细的说明,他们说:“灵巧地安在管道口内的环形薄片,不会让压入容器的东西再往回跑。”看来克特西比压力泵的原始瓣阀呈长筒形,那时已用来搞屋顶通风。后来改用矩形阀,但名称仍保持不变。已经修复了几台罗马压力泵,其阀门已严重腐蚀,但还是可以辨认出来。赫伦在讲到用双气缸压力泵作灭火器时,还介绍了一种原始的跳动活门,一些在三根弯柱上滑上滑下的小圆盘。克特西比的水力机件有用来控制空气进入管道的滑阀。除此以外,在文艺复兴时期前,所有的泵和风箱阀都是瓣阀(或铰形阀)。

达·芬奇发明的一种锥形跳动舌门,无疑是拉梅利的机械发明手册

(1588)中所画的那些舌门的来源。跟拉梅利同时代的阿勒奥蒂,在自动木偶戏中采用了一种蝴蝶阀来控制管道内的水流。但是,从赫伦的时代直到发明蒸汽机,这些跳动舌门没有一种得到广泛应用,各种阀门也没有什么变化。蒸汽机(需要对流入和流出顺序进行更精确的控制)导致了跟发动机的运转有关的精密阀门的出现,这些阀门包括纽科门设计的释放积蓄在气缸中的空气的“喷气阀”、默多克的滑阀(1799)和使双动发动机的活塞保持平衡的平衡阀。

空气泵

德国马德堡市市长盖里克对科学家和哲学家关于形成真空的可能性的争论很感兴趣。作为一个受过专门教育的工程师,他决定通过实验来解决这个问题。公元1650年,他制造出了第一台空气泵——像一台手工操作的水泵,但有制造精密的零件,不透气。这台空气泵是成功的。他指出,在一个抽尽了空气的容器内,听不到钟响,蜡烛不燃烧,动物也会闷死。

他的大规模的演示是十分壮观的。有一次实验是当着皇帝斐迪南三世的面在其宫廷前面的空旷处进行的。在这个实验中,在直径12英尺的两个半球的周边凸缘上涂上润滑脂,将两个半球的凸缘嵌合,然后将球内空气抽尽。将8匹马分成两组拉拴在每个半球上的钢索也未能将其分开,可是放进空气后,它们就分开了。在公元1654年的另一次实验,是将一个立式开口圆筒活塞下面抽成真空,用50人拉拴在活塞上的绳子,他们反而被活塞拉动了。人们就是用这种方法来使活塞做功的;活塞的下面必须始终有一个真空。

但是,没有空气泵能形成真空吗?经过许多年之后,人们发现用蒸汽可以解决这个问题。公元1698年,托马斯·萨弗里第一个利用蒸汽排水,使蒸汽通入密闭容器,然后在容器上喷冷水,使其中的蒸汽冷凝,从而产生真空。他利用这种真空从矿井抽水,又利用锅炉蒸汽将容器中的水排空。这个循环过程反复进行。

萨弗里的设备被称为“矿工之友”。它没有任何活塞或活动零件,也不是一台发动机,而只是一台泵而已。

在此以前的1690年,法国的丹尼斯·帕平已经制造出了一个模型设备,一个直径2.5英寸的活塞刚好能放进汽缸里。在汽缸内盛少量的水,他就能够通过连续地将水加热和冷却的办法,证明汽缸冷却时在活塞下面形成真空。虽然这种设备没有得到实际应用,但却是第一台利用冷凝蒸汽推动活塞和做功的设备。

公元 1712年,将居里克、帕平和萨弗里的上述3项成就结合在一起,达特默思的托马斯·纽科门制成了一台实用的蒸汽机。

胡克发明了万向节

公元1676年,被誉为“英国的达·芬奇”的罗伯特·胡克发表了他关于

“太阳镜”的演说。这是一台采用反射镜系统安全地观测太阳的仪器。这台仪器是用他新奇的万向节进行操纵的。万向节是一种万能仪器……用来通过任何不规则的弯曲轨道产生环形运动。虽然胡克比较详细地讲过这种新仪器的制造方法,并且含糊地指出,这种仪器可能在各方面获得应用,但他自己只想用它来进行天文观测,或用在时钟和日规的设计中,故在当时没有引起多少人注意。

胡克是个才华横溢的人,他在系统提出物理学、化学和地质学方面的革命性理论之余,在伦敦咖啡馆内同思想相近的朋友们无休止地讨论之余,抽空儿搞了二十几项发明。他的日记通常略为提及某些新设想是如何在他的高度活跃的头脑中逐步酝酿成形的。英国皇家学会会议记录,记载了那些使他最新的发现得以驰名的实验。

但是,日记并没有讲他在万向节上花费了许多时间;他也不曾想学会演示万向节。就这种机器而言,发明完全属于他个人看来是勿容置疑的。但是,在动力传输方面,在19世纪的运输革命之前,和许多其他的发明一样,并不需要一个具有向各个方向传动的自由接头。

瓦拉发明了调速器

瓦特在1789年发明的蒸汽机中使用的离心调速器,在当时引起的轰动不是太大;瓦特重视动力系统,只把调速器看成是蒸汽机上的一个附件。然而它是第一台通过改变燃料输入量而有效地控制速度的装置,是使一台机器能进行自动调节的一切反馈装置的鼻祖,在发明史上的地位已确定无疑。瓦特的调速器是由一对离心摆组成,最远处与蒸汽机的旋转飞轮相连,直接连在一个套筒上,套筒又与汽缸的进汽阀连接。当飞轮转动较快时,两个球体就向外摆动,使套筒下降;当速度减慢时,球体就随之下垂,迫使套筒上升。汽阀可开大开小,以维持均匀的速度。

瓦特调速器的历史,也许可追溯到中世纪和文艺复兴时期机器上有时用来代替飞轮的球—链装置或球—杆装置。然而这些装置只发挥飞轮的功能,通过贮存能量、使钻床或曲柄产生较有规律的运动来带动工具越过“死点”;它们不能控制速度或功率输入,最多只是对调速器的造型有所启发。直到力学发展了,人们知道了钟摆的性能,懂得了离心力后,才有人想到利用球—杆组合装置来进行控制。

磨坊工人经常碰到的一个问题是无法利用强风力。因为当轴旋转很快时,磨石容易向上移动,扩大两块磨石之间的距离,以至夹在两块磨石当中的谷粒不能完全磨碎。人们靠手将两块磨石拉紧,使它们之间保持适当的距离。直到1787年,托马斯·米德才想出一种方法,将两个摆分开挂在驱动磨石的正齿轮上,通过链条和万向节提升和调节拉杆。另一对摆与风车翼板相连,这样就使后者随速度的变化而张合。磨坊工人只要改变翼板承受的风力,就能调节旋转轴的速度。两年后,斯蒂芬·胡珀用齿条和扇形齿轮代替链条,设计了一台可以同它匹敌的机器,取得了专利权。

工业机器人也有人工智能.智能机器人概念很广.

20世纪的伟大发明

随着2001年新年钟声的敲响,人们迈着坚实的步伐跨进了21世纪。站在世纪之交的门槛,回顾过去,展望未来,我们心潮澎湃、思绪万千……

20世纪,人类取得了辉煌的成就,从量子理论、相对论的创立,原子能的应用,脱氧核糖核酸双螺旋结构的发现,到信息技术的腾飞,人类基因组工作草图的绘就,世界科技发生了深刻的变革。信息技术、生物技术、新材料技术、先进制造技术、海洋技术、航空航天技术等都取得了重大突破,极大地提高了社会生产力。

机器人技术作为20世纪人类最伟大的发明之一,自60年代初问世以来,经历40年的发展已取得长足的进步。工业机器人在经历了诞生——成长——成熟期后,已成为制造业中不可少的核心装备,世界上有约75万台工业机器人正与工人朋友并肩战斗在各条战线上。特种机器人作为机器人家族的后起之秀,由于其用途广泛而大有后来居上之势,仿人形机器人、农业机器人、服务机器人、水下机器人、医疗机器人、军用机器人、娱乐机器人等各种用途的特种机器人纷纷面世,而且正以飞快的速度向实用化迈进。

人们常常会问为什么要发展机器人?我们说机器人的出现并高速发展是社会和经济发展的必然,是为了提高社会的生产水平和人类的生活质量,让机器人替人们干那些人干不了、干不好的工作。在现实生活中有些工作会对人体造成伤害,比如喷漆、重物搬运等;有些工作要求质量很高,人难以长时间胜任,比如汽车焊接、精密装配等;有些工作人无法身临其境,比如火山探险、深海探密、空间探索等;有些工作不适合人去干,比如一些恶劣的环境、一些枯燥单调的重复性劳作等;这些都是机器人大显身手的地方。服务机器人还可以为您治病保健、保洁保安;水下机器人可以帮助打捞沉船、铺设电缆;工程机器人可以上山入地、开洞筑路;农业机器人可以耕耘播种、施肥除虫;军用机器人可以冲锋陷阵、排雷排弹……

现在社会上对机器人有很多迷惑,有人认为机器人无所不能。这些朋友是从电影、电视、小说中认识机器人的,他们眼中的机器人是神通广大的万能机器,当他们看到现实的机器人时,他们会认为现在的机器人太普通,不能称之为机器人。有人认为机器人是人,形状必须像人,不像人怎么能叫机器人,然而现实中绝大多数的机器人样子不像人,这使很多机器人爱好者大失所望。还有人认为机器人上岗,工人就会下岗,无形中把机器人当成了竞争对手,他们没有想到机器人会为人做许多有益的事情,会推动产业的发展,给人类创造更多的就业机会。

机器人的定义

在科技界,科学家会给每一个科技术语一个明确的定义,但机器人问世已有几十年,机器人的定义仍然仁者见仁,智者见智,没有一个统一的意见。原因之一是机器人还在发展,新的机型,新的功能不断涌现。根本原因主要是因为机器人涉及到了人的概念,成为一个难以回答的哲学问题。就像机器人一词最早诞生于科幻小说之中一样,人们对机器人充满了幻想。也许正是由于机器人定义的模糊,才给了人们充分的想象和创造空间。

机器人指挥

其实并不是人们不想给机器人一个完整的定义,自机器人诞生之日起人们就不断地尝试着说明到底什么是机器人。但随着机器人技术的飞速发展和信息时代的到来,机器人所涵盖的内容越来越丰富,机器人的定义也不断充实和创新。

1886年法国作家利尔亚当在他的小说《未来夏娃》中将外表像人的机器起名为“安德罗丁”(android),它由4部分组成:

1,生命系统(平衡、步行、发声、身体摆动、感觉、表情、调节运动等);

2,造型解质(关节能自由运动的金属覆盖体,一种盔甲);

3,人造肌肉(在上述盔甲上有肉体、静脉、性别等身体的各种形态);

4,人造皮肤(含有肤色、机理、轮廓、头发、视觉、牙齿、手爪等)。

1920年捷克作家卡雷尔·卡佩克发表了科幻剧本《罗萨姆的万能机器人》。在剧本中,卡佩克把捷克语“Robota”写成了“Robot”,“Robota”是奴隶的意思。该剧预告了机器人的发展对人类社会的悲剧性影响,引起了大家的广泛关注,被当成了机器人一词的起源。在该剧中,机器人按照其主人的命令默默地工作,没有感觉和感情,以呆板的方式从事繁重的劳动。后来,罗萨姆公司取得了成功,使机器人具有了感情,导致机器人的应用部门迅速增加。在工厂和家务劳动中,机器人成了必不可少的成员。机器人发觉人类十分自私和不公正,终于造反了,机器人的体能和智能都非常优异,因此消灭了人类。

但是机器人不知道如何制造它们自己,认为它们自己很快就会灭绝,所以它们开始寻找人类的幸存者,但没有结果。最后,一对感知能力优于其它机器人的男女机器人相爱了。这时机器人进化为人类,世界又起死回生了。

卡佩克提出的是机器人的安全、感知和自我繁殖问题。科学技术的进步很可能引发人类不希望出现的问题。虽然科幻世界只是一种想象,但人类社会将可能面临这种现实。

为了防止机器人伤害人类,科幻作家阿西莫夫于1940年提出了“机器人三原则”:

1,机器人不应伤害人类;

2,机器人应遵守人类的命令,与第一条违背的命令除外;

3,机器人应能保护自己,与第一条相抵触者除外。

这是给机器人赋予的伦理性纲领。机器人学术界一直将这三原则作为机器人开发的准则。

在1967年日本召开的第一届机器人学术会议上,就提出了两个有代表性的定义。一是森政弘与合田周平提出的:“机器人是一种具有移动性、个体性、智能性、通用性、半机械半人性、自动性、奴隶性等7个特征的柔性机器”。从这一定义出发,森政弘又提出了用自动性、智能性、个体性、半机械半人性、作业性、通用性、信息性、柔性、有限性、移动性等10个特性来表示机器人的形象。另一个是加藤一郎提出的具有如下3个条件的机器称为机器人:

1,具有脑、手、脚等三要素的个体;

2,具有非接触传感器(用眼、耳接受远方信息)和接触传感器;

3,具有平衡觉和固有觉的传感器。

礼仪机器人

该定义强调了机器人应当仿人的含义,即它靠手进行作业,靠脚实现移动,由脑来完成统一指挥的作用。非接触传感器和接触传感器相当于人的五官,使机器人能够识别外界环境,而平衡觉和固有觉则是机器人感知本身状态所不可缺少的传感器。这里描述的不是工业机器人而是自主机器人。

机器人的定义是多种多样的,其原因是它具有一定的模糊性。动物一般具有上述这些要素,所以在把机器人理解为仿人机器的同时,也可以广义地把机器人理解为仿动物的机器。

1988年法国的埃斯皮奥将机器人定义为:“机器人学是指设计能根据传感器信息实现预先规划好的作业系统,并以此系统的使用方法作为研究对象”。

1987年国际标准化组织对工业机器人进行了定义:“工业机器人是一种具有自动控制的操作和移动功能,能完成各种作业的可编程操作机。”

我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。在研究和开发未知及不确定环境下作业的机器人的过程中,人们逐步认识到机器人技术的本质是感知、决策、行动和交互技术的结合。随着人们对机器人技术智能化本质认识的加深,机器人技术开始源源不断地向人类活动的各个领域渗透。结合这些领域的应用特点,人们发展了各式各样的具有感知、决策、行动和交互能力的特种机器人和各种智能机器,如移动机器人、微机器人、水下机器人、医疗机器人、军用机器人、空中空间机器人、娱乐机器人等。对不同任务和特殊环境的适应性,也是机器人与一般自动化装备的重要区别。这些机器人从外观上已远远脱离了最初仿人型机器人和工业机器人所具有的形状,更加符合各种不同应用领域的特殊要求,其功能和智能程度也大大增强,从而为机器人技术开辟出更加广阔的发展空间。

中国工程院院长宋健指出:“机器人学的进步和应用是20世纪自动控制最有说服力的成就,是当代最高意义上的自动化”。机器人技术综合了多学科的发展成果,代表了高技术的发展前沿,它在人类生活应用领域的不断扩大正引起国际上重新认识机器人技术的作用和影响。

机器人的分类

关于机器人如何分类,国际上没有制定统一的标准,有的按负载重量分,有的按控制方式分,有的按自由度分,有的按结构分,有的按应用领域分。一般的分类方式见表:

分类名称

简要解释

操作型机器人

能自动控制,可重复编程,多功能,有几个自由度,可固定或运动,用于相关自动化系统中。

程控型机器人

按预先要求的顺序及条件,依次控制机器人的机械动作。

示教再现型机器人

通过引导或其它方式,先教会机器人动作,输入工作程序,机器人则自动重复进行作业。

数控型机器人

不必使机器人动作,通过数值、语言等对机器人进行示教,机器人根据示教后的信息进行作业。

感觉控制型机器人

利用传感器获取的信息控制机器人的动作。

适应控制型机器人

机器人能适应环境的变化,控制其自身的行动。

学习控制型机器人

机器人能“体会”工作的经验,具有一定的学习功能,并将所“学”的经验用于工作中。

智能机器人

以人工智能决定其行动的机器人。

我国的机器人专家从应用环境出发,将机器人分为两大类,即工业机器人和特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、娱乐机器人、军用机器人、农业机器人、机器人化机器等。在特种机器人中,有些分支发展很快,有独立成体系的趋势,如服务机器人、水下机器人、军用机器人、微操作机器人等。目前,国际上的机器人学者,从应用环境出发将机器人也分为两类:制造环境下的工业机器人和非制造环境下的服务与仿人型机器人,这和我国的分类是一致的。

古代机器人

机器人一词的出现和世界上第一台工业机器人的问世都是近几十年的事。然而人们对机器人的幻想与追求却已有3000多年的历史。人类希望制造一种像人一样的机器,以便代替人类完成各种工作。

机器马车

西周时期,我国的能工巧匠偃师就研制出了能歌善舞的伶人,这是我国最早记载的机器人。

春秋后期,我国著名的木匠鲁班,在机械方面也是一位发明家,据《墨经》记载,他曾制造过一只木鸟,能在空中飞行“三日不下”,体现了我国劳动人民的聪明智慧。

公元前2世纪,亚历山大时代的古希腊人发明了最原始的机器人——自动机。它是以水、空气和蒸汽压力为动力的会动的雕像,它可以自己开门,还可以借助蒸汽唱歌。

1800年前的汉代,大科学家张衡不仅发明了地动仪,而且发明了计里鼓车。计里鼓车每行一里,车上木人击鼓一下,每行十里击钟一下。

后汉三国时期,蜀国丞相诸葛亮成功地创造出了“木牛流马”,并用其运送军粮,支援前方战争。

1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶,并在大阪的道顿堀演出。

1738年,法国天才技师杰克·戴·瓦克逊发明了一只机器鸭,它会嘎嘎叫,会游泳和喝水,还会进食和排泄。瓦克逊的本意是想把生物的功能加以机械化而进行医学上的分析。

写字机器人

在当时的自动玩偶中,最杰出的要数瑞士的钟表匠杰克·道罗斯和他的儿子利·路易·道罗斯。1773年,他们连续推出了自动书写玩偶、自动演奏玩偶等,他们创造的自动玩偶是利用齿轮和发条原理而制成的。它们有的拿着画笔和颜色绘画,有的拿着鹅毛蘸墨水写字,结构巧妙,服装华丽,在欧洲风靡一时。由于当时技术条件的限制,这些玩偶其实是身高一米的巨型玩具。现在保留下来的最早的机器人是瑞士努萨蒂尔历史博物馆里的少女玩偶,它制作于二百年前,两只手的十个手指可以按动风琴的琴键而弹奏音乐,现在还定期演奏供参观者欣赏,展示了古代人的智慧。

19世纪中叶自动玩偶分为2个流派,即科学幻想派和机械制作派,并各自在文学艺术和近代技术中找到了自己的位置。1831年歌德发表了《浮士德》,塑造了人造人“荷蒙克鲁斯”;1870年霍夫曼出版了以自动玩偶为主角的作品《葛蓓莉娅》;1883年科洛迪的《木偶奇遇记》问世;1886年《未来的夏娃》问世。在机械实物制造方面,1893年摩尔制造了“蒸汽人”,“蒸汽人”靠蒸汽驱动双腿沿圆周走动。

进入20世纪后,机器人的研究与开发得到了更多人的关心与支持,一些适用化的机器人相继问世,1927年美国西屋公司工程师温兹利制造了第一个机器人“电报箱”,并在纽约举行的世界博览会上展出。它是一个电动机器人,装有无线电发报机,可以回答一些问题,但该机器人不能走动。1959年第一台工业机器人(可编程、圆坐标)在美国诞生,开创了机器人发展的新纪元。

现代机器人

现代机器人的研究始于20世纪中期,其技术背景是计算机和自动化的发展,以及原子能的开发利用。

机器人汽车焊接生产线

自1946年第一台数字电子计算机问世以来,计算机取得了惊人的进步,向高速度、大容量、低价格的方向发展。

大批量生产的迫切需求推动了自动化技术的进展,其结果之一便是1952年数控机床的诞生。与数控机床相关的控制、机械零件的研究又为机器人的开发奠定了基础。

另一方面,原子能实验室的恶劣环境要求某些操作机械代替人处理放射性物质。在这一需求背景下,美国原子能委员会的阿尔贡研究所于1947年开发了遥控机械手,1948年又开发了机械式的主从机械手。

铆接机器人

1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。

作为机器人产品最早的实用机型(示教再现)是1962年美国AMF公司推出的“VERSTRAN”和UNIMATION公司推出的“UNIMATE”。这些工业机器人的控制方式与数控机床大致相似,但外形特征迥异,主要由类似人的手和臂组成。

1965年,MIT的Roborts演示了第一个具有视觉传感器的、能识别与定位简单积木的机器人系统。

机器狗

1967年日本成立了人工手研究会(现改名为仿生机构研究会),同年召开了日本首届机器人学术会。

1970年在美国召开了第一届国际工业机器人学术会议。1970年以后,机器人的研究得到迅速广泛的普及。

1973年,辛辛那提·米拉克隆公司的理查德·豪恩制造了第一台由小型计算机控制的工业机器人,它是液压驱动的,能提升的有效负载达45公斤。

到了1980年,工业机器人才真正在日本普及,故称该年为“机器人元年”。

随后,工业机器人在日本得到了巨大发展,日本也因此而赢得了“机器人王国的美称”。

自治潜水器

随着计算机技术和人工智能技术的飞速发展,使机器人在功能和技术层次上有了很大的提高,移动机器人和机器人的视觉和触觉等技术就是典型的代表。由于这些技术的发展,推动了机器人概念的延伸。80年代,将具有感觉、思考、决策和动作能力的系统称为智能机器人,这是一个概括的、含义广泛的概念。这一概念不但指导了机器人技术的研究和应用,而且又赋予了机器人技术向深广发展的巨大空间,水下机器人、空间机器人、空中机器人、地面机器人、微小型机器人等各种用途的机器人相继问世,许多梦想成为了现实。将机器人的技术(如传感技术、智能技术、控制技术等)扩散和渗透到各个领域形成了各式各样的新机器——机器人化机器。当前与信息技术的交互和融合又产生了“软件机器人”、“网络机器人”的名称,这也说明了机器人所具有的创新活力。

机器人的手

机器人要模仿动物的一部分行为特征,自然应该具有动物脑的一部分功能。机器人的大脑就是我们所熟悉的电脑。但是光有电脑发号施令还不行,最基本的还得给机器人装上各种感觉器官。我们在这里着重介绍一下机器人的“手”和“脚”。

机器人必须有“手”和“脚”,这样它才能根据电脑发出的“命令”动作。“手”和“脚”不仅是一个执行命令的机构,它还应该具有识别的功能,这就是我们通常所说的“触觉”。由于动物和人的听觉器官和视觉器官并不能感受所有的自然信息,所以触觉器官就得以存在和发展。动物对物体的软,硬,冷,热等的感觉就是靠的触觉器官。在黑暗中看不清物体的时候,往往要用手去摸一下,才能弄清楚。大脑要控制手,脚去完成指定的任务,也需要由手和脚的触觉所获得的信息反馈到大脑里,以调节动作,使动作适当。因此,我们给机器人装上的手应该是一双会“摸”的、有识别能力的灵巧的“手”。

机器人的手一般由方形的手掌和节状的手指组成。为了使它具有触觉,在手掌和手指上都装有带有弹性触点的触敏元件(如灵敏的弹簧测力计)。如果要感知冷暖,还可以装上热敏元件。当触及物体时,触敏元件发出接触信号,否则就不发出信号。在各指节的连接轴上装有精巧的电位器(一种利用转动来改变电路的电阻因而输出电流信号的元件),它能把手指的弯曲角度转换成“外形弯曲信息”。把外形弯曲信息和各指节产生的“接触信息”一起送入电子计算机,通过计算就能迅速判断机械手所抓的物体的形状和大小。

现在,机器人的手已经具有了灵巧的指,腕,肘和肩胛关节,能灵活自如的伸缩摆动,手腕也会转动弯曲。通过手指上的传感器还能感觉出抓握的东西的重量,可以说已经具备了人手的许多功能。

在实际情况中有许多时候并不一定需要这样复杂的多节人工指,而只需要能从各种不同的角度触及并搬动物体的钳形指。1966年,美国海军就是用装有钳形人工指的机器人“科沃”把因飞机失事掉入西班牙近海的一颗氢弹从七百五十米深的海底捞上来。1967年,美国飞船“探测者三号”就把一台遥控操作的机器人送上月球。它在地球上的人的控制下,可以在两平方米左右的范围里挖掘月球表面四十厘米深处的土壤样品,并且放在规定的位置,还能对样品进行初步分析,如确定土壤的硬度,重量等。它为“阿波罗”载人飞船登月当了开路先锋。

机器人的眼睛

人的眼睛是感觉之窗,人有80%以上的信息是靠视觉获取,能否造出“人工眼”让机器也能象人那样识文断字,看东西,这是智能自动化的重要课题。关于机器识别的理论,方法和技术,称为模式识别。所谓模式是指被判别的事件或过程,它可以是物理实体,如文字,图片等,也可以是抽象的虚体,如气候等。机器识别系统与人的视觉系统类似,由信息获取,信息处理与特征抽取,判决分类等部分组成。

机器认字

大家知道,信件投入邮筒需经过邮局工人分拣后才能发往各地。一人一天只能分拣2-3千封信,现在采用机器分拣,可以提高效率十多倍。机器认字的原理与人认字的过程大体相似。先对输入的邮政编码进行分析,并抽取特征,若输入的是个6字,其特征是底下有个圈,左上部有一直道或带拐弯。其次是对比,即把这些特征与机器里原先规定的0到9这十个符号的特征进行比较,与哪个数字的特征最相似,就是哪个数字。这一类型的识别,实质上叫分类,在模式识别理论中,这种方法叫做统计识别法。

机器人认字的研究成果除了用于邮政系统外,还可用于手写程序直接输入,政府办公自动化,银行合计,统计,自动排版等方面。

机器识图

现有的机床加工零件完全靠操作者看图纸来完成。能否让机器人来识别图纸呢?这就是机器识图问题。机器识图的方法除了上述的统计方法外,还有语言法,它是基于人认识过程中视觉和语言的联系而建立的。把图像分解成一些直线、斜线、折线、点、弧等基本元素,研究它们是按照怎样的规则构成图像的,即从结构入手,检查待识别图像是属于哪一类“句型”,是否符合事先规定的句法。按这个原则,若句法正确就能识别出来。

机器识图具有广泛的应用领域,在现代的工业,农业,国防,科学实验和医疗中,涉及到大量的图象处理与识别问题。

机器识别物体

机器识别物体即三维识别系统。一般是以电视摄像机作为信息输入系统。根据人识别景物主要靠明暗信息,颜色信息,距离信息等原理,机器识别物体的系统也是输入这三种信息,只是其方法有所不同罢了。由于电视摄像机所拍摄的方向不同,可得各种图形,如抽取出棱数,顶点数,平行线组数等立方体的共同特征,参照事先存储在计算机中的物体特征表,便可以识别立方体了。

目前,机器可以识别简单形状的物体。对于曲面物体,电子部件等复杂形状的物体识别及室外景物识别等研究工作,也有所进展。物体识别主要用于工业产品外观检查,工件的分选和装配等方面。

请采纳答案,支持我一下。

相关产品